Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(4'-Chloro-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine$\left.N, N^{\prime}, N^{\prime \prime}\right)($ diethylphosphinothioato-S)platinum(II) tetraphenylborate

Steven A. Ross, ${ }^{\text {a }}$ Gordon Lowe ${ }^{\text {a* }}$ and David J. Watkin ${ }^{\text {b }}$

${ }^{\text {a }}$ Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford
OX1 3QY, England, and ${ }^{\text {b }}$ Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England
Correspondence e-mail: gordon.lowe@chem.ox.ac.uk

Received 19 September 2000
Accepted 11 December 2000
The title compound, $\left[\mathrm{Pt}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{PS}\right)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3}\right)\right]\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right)$, has a distorted square-planar coordination geometry at the platinum(II) centre, due to the constraints of the tridentate terpyridine ligand. The $\mathrm{Pt}^{\mathrm{II}}$-bound diethylphosphinothioate ligand takes up a conformation to avoid non-bonding contacts with atoms H 6 and $\mathrm{H}^{\prime \prime}$.

Comment

Platinum(II) complexes of $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligands are of interest due to their photophysical properties (Tzeng et al., 1999), fast ligand-substitution kinetics (Mureinik \& Bidani, 1978; Carr et al., 2000), and antitumour (Lowe, Droz, Vilaivan, Weaver, Park et al., 1999) and antiparasitic activity (Lowe, Droz, Vilaivan, Weaver, Tweedale et al., 1999). Intercalation into nucleic acids (McCoubrey et al., 1996) and irreversible enzyme inhibition (Bonse et al., 2000) have been implicated as possible modes of action of this class of compounds in vivo. Oligo(deoxy)ribonucleotides containing phosphinothioate linkages have been proposed as potential antisense or antigene agents, due to their resistance to enzymatic hydrolysis in vivo (Eckstein, 2000). Binding of platinum complexes to the phosphinothioate linkage of oligonucleotides has been reported by Elmroth \& Lippard (1995), and crosslinking of

oligonucleotides using binuclear platinum complexes has also been reported (Gruff \& Orgel, 1991). In addition, phosphinothioates have been used as chemoprotective agents for platinum antitumour agents (Thompson et al., 1995). We describe herein the first single-crystal X-ray structure of a
mononuclear platinum(II)-phosphinothioate complex, (I).
The distorted square-planar geometry of the Pt centre in (I) [$\mathrm{N} 5-\mathrm{Pt} 1-\mathrm{N} 16=161.61(14)^{\circ}$; Fig. 1] is in agreement with other reported (terpyridine)platinum(II) complexes (Chernega et al., 1996; Jennette et al., 1976; Tzeng et al., 1999). The $\mathrm{Pt} 1-\mathrm{S} 21-\mathrm{P} 22$ bond angle of $96.84(5)^{\circ}$ is quite acute and is comparable with the equivalent $\mathrm{Pt}-\mathrm{S}-\mathrm{P}$ angles of 107.0 (1) and $104.6(1)^{\circ}$ in a related $\mathrm{Pt}^{\mathrm{II}}-\mathrm{Zn}^{\mathrm{II}}$ bridged dialkylphosphinothioate complex reported by Poat et al. (1990).

The N5-Pt1-S21-P22 torsion angle of 97.0 (3) illustrates the necessity for the phosphinothioate ligand to adopt a conformation which avoids non-bonding contacts with atoms H 6 and $\mathrm{H}^{\prime \prime}$ (H61 and H171 in the present atom-labelling scheme) of the terpyridine ligand. This torsion angle leads to the P centre being displaced significantly from the (terpyridine)platinum(II) plane. Thus, intercalation of this complex into double-stranded nucleic acids would almost certainly lead to steric interactions between the phosphinothioate group and adjacent base pairs. Interestingly, O23 is displaced by 2.58 (2) \AA from the mean plane defined by Pt1, N5, N2, N16 and S21, which may facilitate hydrogen-bonding interactions between O23 and the adjacent base pairs of DNA upon intercalation.

The molecular structure of the cation of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The intermolecular stacking interactions of the cationic units of (I).

The crystal structure of (I) shows that the cations are arranged in a stacked manner in the solid state (Fig. 2). This has been observed previously with (terpyridine)platinum(II) complexes (Chernega et al., 1996; Tzeng et al., 1999), and is a good indication of the ability of these compounds to intercalate and also to stack in solution (Jennette et al., 1976). The intermolecular stacking distance [3.59 (5) \AA between the equivalent mean planes described above] and antiparallel orientation are consistent with previously reported structures. The intermolecular $\mathrm{Pt} 1 \cdots \mathrm{Pt}^{\prime}$ distance is 4.29 (5) \AA.

Finally, the structural parameters for the present plati-num(II)-phosphinothioate complex will prove useful in predicting how the (terpyridine)platinum(II) fragment will bind to nucleic acids containing the phosphinothioate linkage.

Experimental

Complex (I) was prepared as its nitrate salt in 71% yield following the general method of Lowe \& Vilaivan (1996). Triethylammonium diethylphosphinothioate was prepared as described previously by Reynolds et al. (1983). Dissolution of the nitrate salt in water followed by the addition of excess sodium tetraphenylborate afforded a yellow precipitate which was redissolved by the addition of acetonitrile. Evaporation of this water/acetonitrile solution afforded single crystals of (I) (m.p. > 503 K). Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, d_{6}$-DMSO, δ, p.p.m.): $1.12(6 \mathrm{H}, t), 4.01(4 \mathrm{H}, q u i n), 8.02$ $(2 \mathrm{H}, d d), 8.51(2 \mathrm{H}, d d), 8.57(2 \mathrm{H}, d), 9.00(2 \mathrm{H}, s), 9.23(2 \mathrm{H}, d)$; ${ }^{31} \mathrm{P}$ NMR ($101 \mathrm{MHz}, d_{6}$-DMSO, δ, p.p.m.) $31.93\left(J_{105 \mathrm{Pt}-{ }^{31} \mathrm{P}}=88 \mathrm{~Hz}\right.$); elemental analysis calculated (for hexafluorophosphate salt): C 29.3, H 2.6, N 5.4%; found: C 29.4, H 2.6, N 5.4%.

Crystal data

```
\(\left[\mathrm{Pt}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{PS}\right)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3}\right)\right]\) -
    \(\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right)\)
\(M_{r}=951.20\)
Monoclinic, \(P 2_{1} / n\)
\(a=10.7550\) (5) \(\AA\)
\(b=13.5230(3) \AA\)
\(c=26.764\) (1) \(\AA\)
\(\beta=87.356(2)^{\circ}\)
\(V=3888.4 \AA^{3}\)
\(Z=4\)
```

Data collection
Enraf-Nonius DIP2000 diffractometer
ω scans
Absorption correction: multi-scan (DENZO; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.46, T_{\text {max }}=0.46$
16185 measured reflections

Refinement

Refinement on F

$R=0.030$

$w R=0.037$
$S=1.026$
5773 reflections
487 parameters
H -atom parameters not refined
$D_{x}=1.62 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 16185 reflections
$\theta=0-27^{\circ}$
$\mu=3.82 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Prism, yellow
$0.8 \times 0.2 \times 0.2 \mathrm{~mm}$

> 7838 independent reflections 5773 reflections with $I>3 \sigma(I)$
> $R_{\text {int }}=0.05$
> $\theta_{\max }=26.57^{\circ}$
> $h=-13 \rightarrow 13$
> $k=0 \rightarrow 16$
> $l=0 \rightarrow 33$

H atoms were placed geometrically after each cycle. The short C28-C280 bond is probably a consequence of librational disorder, but it could not be reliably modelled on this basis.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{S} 21$	$2.3230(11)$	$\mathrm{P} 22-\mathrm{O} 24$	$1.569(3)$
$\mathrm{Pt} 1-\mathrm{N} 2$	$1.946(3)$	$\mathrm{P} 22-\mathrm{O} 27$	$1.571(3)$
$\mathrm{Pt} 1-\mathrm{N} 5$	$2.020(4)$	$\mathrm{O} 24-\mathrm{C} 25$	$1.471(6)$
$\mathrm{Pt} 1-\mathrm{N} 16$	$2.027(3)$	$\mathrm{O} 27-\mathrm{C} 28$	$1.447(6)$
$\mathrm{S} 21-\mathrm{P} 22$	$2.0346(16)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.479(8)$
$\mathrm{P} 22-\mathrm{O} 23$	$1.473(3)$	$\mathrm{C} 28-\mathrm{C} 280$	$1.415(9)$
S21-Pt1-N2	$178.6(1)$	$\mathrm{S} 21-\mathrm{P} 22-\mathrm{O} 24$	$106.56(14)$
S21-Pt1-N5	$99.4(1)$	$\mathrm{O} 23-\mathrm{P} 22-\mathrm{O} 24$	$112.52(19)$
N2-Pt1-N5	$80.87(14)$	$\mathrm{S} 21-\mathrm{P} 22-\mathrm{O} 27$	$103.76(13)$
$\mathrm{S} 21-\mathrm{Pt} 1-\mathrm{N} 16$	$98.9(1)$	$\mathrm{O} 23-\mathrm{P} 22-\mathrm{O} 27$	$113.92(19)$
N2-Pt1-N16	$80.82(14)$	$\mathrm{O} 24-\mathrm{P} 22-\mathrm{O} 27$	$103.22(19)$
N5-Pt1-N16	$161.61(14)$	$\mathrm{P} 22-\mathrm{O} 24-\mathrm{C} 25$	$121.2(3)$
$\mathrm{Pt} 1-\mathrm{S} 21-\mathrm{P} 22$	$96.84(5)$	$\mathrm{P} 22-\mathrm{O} 27-\mathrm{C} 28$	$118.2(3)$
$\mathrm{S} 21-\mathrm{P} 22-\mathrm{O} 23$	$115.69(15)$		

Data collection: XPRESS (MacScience, 1989); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers \& Betteridge, 1996); molecular graphics: CAMERON (Watkin, Prout \& Pearce, 1996); software used to prepare material for publication: CRYSTALS.

We thank the EPSRC and BBSRC for support.
Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1116). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bonse, S., Richards, J. M., Ross, S. A., Lowe, G. \& Krauth-Siegel, R. L. (2000). J. Med. Chem. 43, 4812-4821.

Carr, C. A., Richards, J. M., Ross, S. A. \& Lowe, G. (2000). J. Chem. Res. (S), pp. 566-568.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst, A35, 698-699.
Chernega, A., Droz, A. S., Prout, K., Vilaivan, T., Weaver, G. W. \& Lowe, G. (1996). J. Chem. Res. (S), pp. 402-403.

Eckstein, F. (2000). Antisense Nucleic Acid Drug Dev. 10, 117-121.
Elmroth, S. K. C. \& Lippard, S. J. (1995). Inorg. Chem. 34, 5234-5243.
Gruff, E. S. \& Orgel, L. E. (1991). Nucleic Acids Res. 19, 6849-6854.
Jennette, K. W., Gill, J. T., Sadownick, J. A. \& Lippard, S. J. (1976). J. Am. Chem. Soc. 98, 6159-6168.
Lowe, G., Droz, A. S., Vilaivan, T., Weaver, G. W., Park, J. J., Pratt, J. M., Tweedale, L. \& Kelland, L. R. (1999). J. Med. Chem. 42, 3167-3174.
Lowe, G., Droz, A. S., Vilaivan, T., Weaver, G. W., Tweedale, L., Pratt, J. M., Rock, P., Yardley, V. \& Croft, S. L. (1999). J. Med. Chem. 42, 999-1006.
Lowe, G. \& Vilaivan, T. (1996). J. Chem. Res. (S), pp. 386-387.
McCoubrey, A., Latham, H. C., Cook, P. R., Rodger, A. \& Lowe, G. (1996). FEBS Lett. 380, 73-78.
MacScience (1989). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Mureinik, R. J. \& Bidani, M. (1978). Inorg. Chim. Acta, 29, 37-41.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Poat, J. C., Slawin, A. M. Z., Williams, D. J. \& Woollins, J. D. (1990). J. Chem. Soc. Chem. Commun. pp. 1036-1038.
Reynolds, M. A., Oppenheimer, N. J. \& Kenyon, G. L. (1983). J. Am. Chem. Soc. 105, 6663-6667.
Thompson, D. C., Wyrick, S. D., Holbrook, D. J. \& Chaney, S. G. (1995). Biochem. Pharmacol. 50, 1413-1419.
Tzeng, B.-C., Fu, W.-F., Che, C.-M., Chao, H.-Y., Cheung, K.-K. \& Peng, S.-M. (1999). J. Chem. Soc. Dalton Trans. pp. 1017-1023.

Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

